
2022 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MODELING SIMULATION AND SOFTWARE (MS2) TECHNICAL SESSION

AUGUST 16-18, 2022 - NOVI, MICHIGAN

MULTI-LEVEL HARDWARE-IN-THE-LOOP TEST API FOR
HARDWARE-SOFTWARE INTEGRATION TESTING

Michael Lingg, PhD1, Timothy J Kushnier2, Rodolfo Proenza, MS2, Howard Paul1,
Brendan Grimes1, Emory Thompson1

1Array of Engineers, Grand Rapids, MI
2DEVCOM GVSC SEC, Warren, MI

ABSTRACT
Hardware/software integrated system ensures a system will operate as intended

in the same configuration it will be used in the field. Manual system testing can
be a very slow and error prone process, as well as being incapable of testing
interfaces that humans cannot interact with. Many existing solutions exist to
introduce test hardware into the loop for verifying systems, but most of these
solutions provide a separate component for each hardware interface. This paper
presents an approach for a single integrated system that can test all hardware
interfaces of a system under test, managed by a single controller. This test system
provides the capability to abstract away the hardware being tested so a test developer
can develop tests while only understanding the manual interfaces of the system
being tested. We show that this approach can provide a significant acceleration
to the time to execute tests, as well as improving the reliability, and consistency of
the tests.

Citation: M. Lingg, T. Kushnier, R. Proenza, H. Paul, B. Grimes, E. Thompson, ”Multi-level Hardware-In-The-Loop
Test API For Hardware-Software Integration Testing,” In Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. INTRODUCTION

Integrated hardware/software systems are
invaluable in modern equipment. While
pure hardware systems often require complete

replacement to expand or add new capabilities,
integrated hardware/software systems can adapt
to new features being added to the system with
updated software. This update capability provides

DISTRIBUTION A. Approved for public release;
distribution unlimited. OPSEC 6534

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

two primary benefits. First the ease of adding
new features can extend the life of the equipment,
which may otherwise become obsolete as technology
advances. Second, software updates can allow a
system to adapt to a rapidly changing environment.
Over the air software updates allow equipment to be
repurposed, or provided extended capabilities, in the
field [1].

The flexibility provided by the integrated
hardware/software system can lead to increased
complexity when testing the system. During initial
development, software unit testing may be performed
on a PC without the actual hardware, and some
hardware functionality can be tested with a basic test
stand. However these separate test methods often
fail to find bugs that show up when the software
and hardware are integrated together. Integration
testing of an integrated hardware/software system
can be performed by a human working with
the interface and observing the outputs of the
system, but these systems increasingly have multiple
components communicating with each other. In most
cases, the interactions between multiple components
use hardware communication protocols that require
specific hardware to interface with, delaying testing
until all systems are available to work together,
or requiring a hardware test interface. Automated
hardware testing can allow for a greater number of
tests to be executed in a shorter period of time,
allowing for a greater number of boundary conditions
to be tested, or simply reducing the amount of time
required for testing.

Automated hardware in the loop testing can
allow for earlier testing during development. As
soon as hardware is available, the hardware in the
loop tests can be ready to run as the software
implementation becomes more complete. This
earlier testing allows the developers to receive
feedback on their implementation well before the end
of development. As development continues, the test
suite can continue to be used for regression analysis,
to ensure that while new features are implemented

correctly, existing functionality is not broken. The
same hardware in the loop test system can also be
adapted to be used on the production line, ensuring
all functionality works as expected on each unit as
it is produced, or to diagnose hardware issues in
the field. Finally the automated hardware in the
loop testing can be used to test new features on
an identical hardware software integration system
back at the shop, before deploying to the field.
The updates can be quickly tested for regression to
ensure all features work as expected, providing high
confidence that deploying the software will have the
desired effect.

The focus of this paper is to provide a hardware in
the loop test approach that reduces the time necessary
to fully test an integrated hardware/software system,
with a particular focus on reducing the time, and
technical knowledge required, to develop tests. To
provide a proper framework we will next look
at three examples for testing components of an
integrated hardware software system, and how test
developers and the rest of the system would interact
with these components. Then we will look at existing
hardware in the loop testing solutions. Finally we
will present a new all in one hardware in the loop
test approach. Then look at test performance results
showing the benefits of this system in time to execute
a suite of tests, and reducing weeks long manual
tests to days. Finally we will discuss the consistency
provided by the test interface, and automation of test
execution.

2. BACKGROUND
First we will look at some possible components

of an integrated hardware/software system to be
tested. In these examples we consider how these
components work in a complete system, with no
test hardware connected to the system under test.
After defining how each component interacts with
the system controller, an example system with all
components will be described, including manual test
examples.

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 2 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2.1. Simulating a Multi-Function Display
The first component looked at is a multi-function

display (MFD). In the complete system, inputs from
the MFD would lead to the system activating other
components of the system, or displaying data from
other components of the system, for example vehicle
climate control. The MFD communicates with the
system controller via a Controller Area Network
(CAN) bus [2]. The system controller will send a
periodic Heartbeat message that includes the current
screen the MFD is expected to display, and the
system will go into a fault mode if the MFD does
not acknowledge the heartbeat. Any button press
by a human tester on the MFD is sent as a single
message from the MFD over the CAN bus. The
button press message will include the identifier of the
button pressed.

Figure 1: Example Multi-Function Display.

A basic test for this example would start with
powering up the system with the MFD attached, then
verify after a time limit that a fault is not displayed
on the screen. Next a button would be pressed by a
human tester, then the human tester will verify the
display changes to the appropriate screen within a
time limit.

2.2. Testing control of a speaker
The second component for the system is a

speaker. This component is rather simple on the
surface, the speaker is commanded by the system to
output a given frequency at a given volume. One
possible manual test is extremely simple, if rather
imprecise. Have a human tester listen to the speaker

and decide if it sounds right. Another possible option
is testing the speaker sound output with a microphone
and analyzing the signal. The microphone would
require a fairly controlled environment if a precise
measurement of the sound output is desired.

Figure 2: Speaker Test.

2.3. Testing reading of a thermocouple
The final component is a thermocouple that

outputs a voltage to be translated by the system into
a temperature. There are limited simple test methods
to test this with any accuracy. A thermometer can be
placed next to the thermocouple by a human tester
to measure the present temperature, and a fan, or
heater, could be used to decrease or increase the
temperature, but the thermocouple and thermometer
may change temperature at different rates. An
expensive temperature chamber can test the system
with high precision, but the size of the system under
test may limit practical use of a temperature chamber.

2.4. Combined system
With these components we can define how the

system works as a whole to act as a high temperature
alarm. The temperature sensor provides the current
temperature to the system, and the speaker sounds
an alarm if a high temperature condition exists. The
MFD provides an alarm menu system to set the
temperature threshold for the alarm condition.

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 3 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

A simple manual test procedure might be for
a human tester to power up the system with
all hardware connected, verify the main menu is
displayed on the MFD, not a Fault menu. Then
the human tester would press the button to enter the
alarm menu. Next the human tester would press
the increase or decrease temperature button until the
temperature threshold is one unit below the current
temperature, and verify the alarm sounds. Finally the
human tester would press the increase temperature
button twice, and verify the alarm does not sound.

2.5. Existing solutions
While human testing of systems often has low

up front costs, the time required for human testing
can quickly add up, and often humans are simply not
equipped to properly test many digital and analog
systems. For example a human can verify the
menu switching for the MFD, but if the MFD is
disconnected a human cannot determine if, or when,
the system entered fault mode. Simple hardware
solutions can be tailored to specific tests. An
oscilloscope can be connected to the CAN bus to
record screen update messages, but then the human
tester will need to decode the CAN signals and many
oscilloscopes have a limited capture window. A
better solution for this test application is to replace
the MFD with simulation hardware that can read
and respond with digital signals at very high speed,
and includes the capability to process and decode
the data. This approach allows button presses to be
sent by a script, rather than physically pressed by
a human tester. While it may be possible to inject
simulated button presses with the MFD attached, the
MFD is being replaced with simulated hardware in
this example, as it is assumed that the MFD CAN
traffic would conflict with simulated CAN traffic.

National Instruments (NI) provides an excellent
range of hardware test products [3]. Among other
products is a CAN analyzer [4] that could work
nicely for simulating the MFD in this example. Total
Phase also produces a similar analyzer [5]. NI also

provides the LabVIEW [6] program that allows their
hardware products to be programmed for specific
operation, and to analyze data read by their hardware.

As powerful as these existing products are,
they tend to focus on the signals that the NI
product is designed to work with. To use these
devices, a test developer will need to understand the
hardware signals involved. For our MFD example,
understanding what the system should do from a
user perspective is not sufficient, the test developer
will also need to understand what CAN messages
are being communicated, and sometimes details of
how the CAN protocol works. Additionally while
some of these existing hardware test products can be
connected together to simulate, and/or read, multiple
signals in parallel, the products are typically sold
separately and require the test developer to determine
how to connect the devices and program them to
work together.

An alternative is creating an integrated system
that manages all necessary hardware interfaces
in a single unit. Benefiting this approach,
costs of producing circuit boards have decreased
significantly. Today a circuit board capable of
connecting to all sensors and communications ports
of a small to medium system can be printed, even
in small quantities, for a unit cost equivalent to
tens of man hours of a human tester’s time. This
makes integrating all of the necessary elements to
test a system into a single board, that includes its
own processing unit, very cost effective. With all
of the testing components integrated together, a test
scripting interface can be developed that abstracts
away the low level details of the components being
tested. This abstraction means tests can be developed
that only requires high level knowledge of how the
system works, no longer requiring test developers to
understand the protocols involved. Next the details
of such a system will be discussed.

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 4 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 3: Multi-level API.

3. METHODS
In this section a Multi-level Hardware-In-the-Loop

(MHIL) test system will be described, from here
on referred to as the MHIL test system. The
discussion will start with the hardware protocols
from the system under test example provided in
the Background section, and the abstraction layers
will be described at higher and higher levels, until
a simple interface is reached that mimics a system
under test. This is illustrated in figure 3.

3.1. Hardware
To satisfy the system under test example above,

the MHIL test system would include at a minimum
a processor, an FPGA, a CAN transceiver, an
Analog to Digital Converter (ADC) for analyzing
analog waveforms, and a Digital to Analog Converter
(DAC) for outputting commanded voltages and
analog waveforms. These components are assembled
on a single circuit board to provide maximum
integration. Integrating the processor and FPGAs
into a single package, System on Modules (SoM)
[7] are fast becoming a standard tool for advanced
embedded processing needs as they provide the
powerful benefit of a simple high-performance
memory mapped interface between processor and
FPGA. The interface allows for massive amounts
of data to be captured by the various modules on
the FPGA, and for this data to be directly written
to system RAM, ready for access by the processor.

The MHIL test system as described in the next
subsections also includes an Ethernet connection for
communication with a host PC, providing additional
flexibility. The circuit board also provides a simple
header connection for all input and output ports
in the MHIL test system, and custom cables can
be constructed to connect the simple header to the
system under test connectors, ranging from custom
style header connections, to ADC test points, to
standard or MIL spec connectors.

As discussed in the previous section, the MHIL
system will replace interfaces humans use for
interaction with the hardware described above. The
MFD can be replaced with a CAN bus connected
to the MHIL system that can send simulated button
presses, and log screen updates the system under
test sends over CAN. The speaker can be replaced
with an ADC to record waveforms being sent to the
speaker. The thermocouple can be replaced with a
DAC to send voltages representing the thermocouple
output for simulated temperatures.

3.2. FPGA
The FPGA(s) is used to directly control the

hardware elements on the MHIL test system. A
high speed processor with a Real Time Operating
System (RTOS) can sample high speed data with
a consistent sample rate. However an FPGA can
provide better timing guarantees, and an FPGA can
manage multiple ADCs with high sample rates, while

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 5 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

managing multiple DACs, CAN ports and other
hardware interfaces, all in parallel. Additionally
the FPGA can be used as a common clock between
all of the hardware the FPGA manages, ensuring
data is sent at the desired time, and received data is
timestamped, with very high precision. An FPGA
running on a 100 MHz clock can ensure all outputs
are sent, and all inputs are timestamped, with a 10
nanosecond precision, as long as they are all running
through the FPGA.

For controlling the DAC, the FPGA converts
desired DAC voltage values DAC counts, as well as
outputting samples from a repeating waveform, if
desired. For the ADC, the FPGA reads and stores
the ADC samples in RAM for access by the RTOS.
For the CAN bus the FPGA manages the digital
bits of the CAN protocol for sending and receiving
messages. At all times the FPGA monitors the CAN
port to handle arbitration (ensuring the managed
port does not send messages that collide with other
messages active on the bus), and to process CAN
messages received from other nodes.

3.3. RTOS
The basic function of the RTOS is to manage

when the FPGA is commanded to update hardware
outputs, logging data received to alleviate limited
FPGA memory, and sending hardware configurations
to the FPGA. Configurations might include
elements such as BAUD rate, or sample rates, and
configurations can include device specific calibration
values for the components, such as the DAC or
ADC. An RTOS is used to ensure messages are
sent at precisely the desired time. This interface
provides some abstraction of the values the hardware
sends out, such as producing the PWM (Pulse-Width
Modulation for increasing the precision of the
DAC voltage output) waveform necessary for a
commanded DAC voltage, or generating the DAC
output samples, such as for a sine wave, when
provided the desired waveform, frequency and
amplitude. Similarly a set of CAN messages can

be sent to the RTOS from the host PC, with times to
send the messages, and the RTOS ensures the timing
of the commanded messages.

The real value of the RTOS is in managing
periodic messages, and request response messages.
The RTOS can be commanded to repeat a given
output, similar to the CAN heartbeat message,
and the RTOS will keep sending the message
at the commanded rate. The RTOS will also
manage automatic updates to the message, such as
incrementing a count of how many heartbeats have
been sent. The updates can also be used to modify
the message being sent based on other data received
from the system under test, an example of this could
be acknowledging the requested MFD state in a
CAN message. In addition to the periodic message,
the RTOS can send messages based on trigger
conditions. These trigger conditions can range
from sending a single CAN message in response
to a received CAN heartbeat, to updating a DAC
output based on a value read by the ADC, or any
combination of outputs, based on a combination of
input conditions.

3.4. Host PC
In the current MHIL system, a host PC is used

for execution of the test or simulation scenarios. The
host PC software is broken into two levels. The lower
level is a communication protocol that specifies how
the MHIL hardware communicates with the system
under test. The higher level is a simulation interface
that provides functionality mimicking the system
under test interface, translating this interface to the
actual hardware in the system. More details of each
subsystem is provided next.

3.5. Host PC Hardware interface
The hardware interface translates between the

hardware elements in the system under test, and
how the hardware elements are organized within the
MHIL test system. In our example system under
test the MFD interfaces with a CAN bus. In a more

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 6 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

complex system this may be one of multiple CAN
busses. The hardware interface translates from the
MFD CAN bus defined by the system under test, to
how the MHIL test system refers to the same port,
possibly simply CAN bus 1. This is extended further
with the ADC system. The system under test may
have a large number of analog test points that do not
all need to be sampled in parallel. To accommodate
this, the MHIL test system can use a multiplexer
(MUX) to switch one or more ADCs between a
greater number of test points. So when a system test
requests the speaker voltage waveform be sampled,
the hardware interface can set the appropriate MUX
settings to sample the speaker voltage waveform at
the desired time.

3.6. Host PC Simulation interface
Finally the simulation interface provides script

functions that replicate the system under test. For
our system under test example, we will focus on
simulating the elements going into the system under
test. Methods to test the MFD, thermocouple and
speaker themselves are not described here. To
accomplish this, the MHIL test system will simulate
the MFD on the CAN bus, simulate the thermocouple
voltage value via the DAC, and reading the voltage
going to the speaker using the ADC.

The following functions would be provided for
simulating the MFD:

• connect mfd: This function would create
a trigger condition so the RTOS will send
an acknowledgement of received heartbeat
message. The response will include the
message identifier from the heartbeat message
that triggered the response.

• disconnect mfd: This function would remove
the trigger condition to respond to the
heartbeat.

• read mfd state: This function will return
the commanded MFD state from the last

received heartbeat message, including if a fault
condition exists.

• push button: This function will send the CAN
button press message with one of the following
button indexes:

– alarm menu button: Enters the alarm
menu, if the menu state is in the main
menu.

– temp up button: Increments the alarm
temperature, if the menu state is in the
alarm menu.

– temp down button: Decrements the
alarm temperature, if the menu state is
in the alarm menu.

The following function would be provided for
simulating the temperature sensor:

• set temperature(in temperature): This function
would translate from the desired temperature
to the desired DAC voltage in degrees Celsius.
The DAC voltage would be sent to the RTOS
to be converted into a PWM waveform, which
would be sent to the FPGA to set the DAC
output.

The following function would be provided for
reading the speaker:

• read speaker(): This function would command
the hardware interface to MUX an ADC to the
speaker voltage test point, then command the
RTOS to read the ADC waveform, as sampled
by the FPGA, and return it to the host PC, to
post process and find the current frequency and
volume being sent to the speaker. Frequency
and volume are provided as elements of this
call.

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 7 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3.7. Test example
A simple manual test example was provided in

the background section. As discussed, some parts of
the test, such as the exact timing of screen updates,
and if a fault condition was set while the MFD was
disconnected, cannot be tested manually. Now we
will look at how this test might be performed with
the MHIL test system with the example test script
below.

Assumption: Default temperature alarm
threshold is 50 degrees Celsius.

connect_mfd()

wait(test_delay)

current_state = read_mfd_state()
if current_state is not MAIN_MENU:

report_error()

push_button(alarm_menu_button)

wait(test_delay)

current_state =
read_mfd_state().get_menu_state()

if current_state is not ALARM_MENU:
report_error()

set_temperature(51)

wait(test_delay)

speaker_signal = read_speaker()
if speaker_signal.frequency

is not ON_FREQUENCY:
report_error()

if speaker_signal.volume
is not ON_VOLUME:
report_error()

set_temperature(49)

wait(test_delay)

speaker_signal = read_speaker()
if speaker_signal.frequency

is not OFF_FREQUENCY:
report_error()

if speaker_signal.volume
is not OFF_VOLUME:
report_error()

disconnect_mfd()

wait(test_delay)

current_state =
read_mfd_state().get_menu_state()

if current_state is not FAULT_STATE:
report_error()

This test can cover everything required in the
manual procedure, while the script is easily readable
by someone who understands the system under test,
but may not understand CAN busses, or DACs.
Beyond being easy to write, the test includes very
precise timing in that it can check the state of the
system after precise, computer controlled delays, to
ensure the desired behavior happens at the required
time.

4. RESULTS
The MHIL system provided above is a simple

example for discussing the capability of the system,
potential systems are limited only by the number
of SoMs used in the system. One system we have
been using for testing integrated hardware/software
systems includes the following components:

• 1 UART port.
• 4 UART ports
• 2 CAN networks
• 4 DACs
• 6 ADC channels
• 42 GPIOs
• 1 Ethernet port

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 8 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Note: UART ports can be configured as RS232
or RS485. DACs range from 0 to 10V, accurate to 10
mV before dithering. ADC channels are MUXed to
16 analog input ports. 2 ADC channels capable of 25
(Million samples per second) MS/s max capture rate
and 4 ADC channels capable of 1MS/s capture rate.

In addition, the host PC is capable of interacting
with a large variety of other interfaces, for example:

• 1 iBoot
• 1 Eithernet interface
• 1 USB

Note: Ethernet is used for Data Distribution
Service (DDS) communication.

This configuration is intentionally over
engineered for any single system to be tested.
Combining extra capability into a single MHIL
system provides minimal increase of cost (10-20%),
while allowing us to use the same MHIL system
to test system under test configurations, without
needing to spin up a new MHIL system for each
system under test. Having this many hardware
interfaces integrated into a single MHIL system
allows significant parallel capability of the interfaces.
The MHIL system can send separate messages on
each of the two RS232 ports and each of the two
CAN networks, as well as toggling GPIOs and
capturing on all six ADC channels, with millisecond
accuracy of commanded updates from the RTOS. For
capturing timing of outputs and inputs, the FPGA can
be used to synchronize the system.

One system under test includes multiple tests
that use various combinations of 1 UART port, and
1 RS232 port, both CAN ports, 3 DACs, 14 of
the analog input ports, and 5 GPIO pins. Testing
the system includes 110 tests to execute, these
executions consist of 70 base tests, of which some
were required to be executed on multiple units.
Between test execution time, time to document
results, and general overhead time involving a
manual tester, each person could execute on average
5 tests per day. This resulted in 22 work days to

execute the tests, or 4.4 weeks under ideal situations.
Often these tests had to be executed multiple times
due to user error. Further each failure results in
time to analyze the reason for the failure and ensure
the next execution will succeed. This failure rate
and time for analyzing failures added an additional
50% to the overall execution time, extending time
to completely test the system to approximately 6.6
weeks. The MHIL system produces consistent test
results and can be run 24/7. On average each test can
be executed by the MHIL system in 20 minutes. This
means the MHIL system can run all 110 tests in 55
hours, or less than 3 days.

A second system analyzed includes DDS
communications, 1 CAN port and 1 ADC port. This
system has 10 tests to execute. Considering only the
time to execute each test manually, this set of tests
took 184 hours. The automated test can be run in
just under 40 hours. With the current system under
test, there are some steps that require some human
intervention to execute the test. Of the 40 hours to
execute this set of tests, just under 4 hours requires a
human to be present. Note these test have limitations
to how much automation can improve the execution
times as the system under test includes timers the
MHIL system has to wait on. The test execution time
is further broken down as follows in figure 4.

The MHIL system also provides additional
benefits beyond the simple acceleration of test
execution. A script interface with functions that
correspond with the customer’s system under test
can provide an easy to use interface, and reducing
the training necessary for test developers to use the
system. While reducing the necessary training of
test developers, the test automation does also lead
to the need for more precision in requirements and
tests. While ambiguous requirements can be liberally
interpreted by a human tester, often with passing
results, the automated system requires precise values.
This leads to increased cost of requirements, and
sometimes of the tests themselves, but while the
ambiguity can lower costs it also can allow a

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 9 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

number of errors to slip through testing. The
ambiguity can also mean that a new tester interprets
the requirements differently, and will fail the test.
The automation of the test execution ensures tests
perform the same operations, and run for the same
duration, each time a test is executed, depending on
any delays due to the system under test. Additionally,
minor changes to requirements can be overlooked by
testers so a manual test may not need to be rewritten,
but minor changes will often lead to an update of
the automated test. While this is also an increased
cost, this can provide beneficial additional review,
and validation that each change is correct.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Test #

H
ou

rs

Manual Test
Automated Test

Figure 4: Second system test timing breakdown.

5. CONCLUSION
Reducing test time through test automation

has been proven effective in reducing costs, and
identifying bugs in the system. With the continued
reduction in cost of producing circuit boards,
providing a single integrated test system capable
of performing hardware in the loop testing of a
hardware software integrated system is not only
practical, but also cost effective. We have provided
a template for designing such an integrated system,
as well as describing a high level test interface
that abstracts away the specific hardware under test,

and presents the test environment in a way that
anyone familiar with the customer system will be
comfortable with. We have provided timing results
showing this system provides benefits similar to
other automated systems in reducing time to execute
tests, in one case reducing a manual set of tests
requiring 6.6 weeks to execute, being run in 3 days
with the MHIL system. We also discussed the less
quantifiable benefits of how the system can make
test development easier, more repeatable, and less
ambiguous.

We look to extend the capabilities of this system
further by seeing how the following additional
features benefit the system:

• Adding RTOS monitoring to validate during
run time how well tasks are executing at the
proper rate, and using this information to
provide warnings if the number of operations
being performed have a chance of overrunning
deadlines in a worst case scenario.

• Adding a model based IDE to extend the
customer focused test scripts to a drag and
drop environment, further simplifying test
development with the system.

• Adding the capability to scan customer
Interface Control Documents (ICDs) so that all
messages can be presented to test developers
with the required message components.

• A simplified lower cost unit that excludes the
analog components for systems under test that
only have digital signals.

• Networking multiple MHIL systems for testing
multiple systems under test at the same time, or
systems under test with a very high number of
hardware connections.

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 10 of 11

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

6 References
[1] “Tesla over-the-air updates,” theverge.com,

March 2022. [Online]. Available: https:
//www.theverge.com/2018/6/2/17413732/tesla-
over-the-air-software-updates-brakes

[2] “Can bus,” wikipedia.com, March 2022.
[Online]. Available: https://en.wikipedia.org/
wiki/CAN bus

[3] “Ni hardware,” ni.com, March 2022.
[Online]. Available: https://www.ni.com/en-
us/shop.html#pinned-nav-section2

[4] “Ni can interface device,” ni.com, March 2022.
[Online]. Available: https://www.ni.com/en-
us/shop/hardware/products/can-interface-
device.html

[5] “Komodo can duo interface,” totalphase.com,
March 2022. [Online]. Available: https://www.
totalphase.com/products/komodo-canduo/

[6] “Labview,” ni.com, March 2022. [Online].
Available: https://www.ni.com/en-us/shop/
labview.html

[7] “System on module,” wikipedia.com, March
2022. [Online]. Available: https://en.wikipedia.
org/wiki/System on module

Multi-level Hardware-In-The-Loop Test API For Hardware-Software Integration Testing, Lingg, et al.

Page 11 of 11

https://www.theverge.com/2018/6/2/17413732/tesla-over-the-air-software-updates-brakes
https://www.theverge.com/2018/6/2/17413732/tesla-over-the-air-software-updates-brakes
https://www.theverge.com/2018/6/2/17413732/tesla-over-the-air-software-updates-brakes
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_bus
https://www.ni.com/en-us/shop.html#pinned-nav-section2
https://www.ni.com/en-us/shop.html#pinned-nav-section2
https://www.ni.com/en-us/shop/hardware/products/can-interface-device.html
https://www.ni.com/en-us/shop/hardware/products/can-interface-device.html
https://www.ni.com/en-us/shop/hardware/products/can-interface-device.html
https://www.totalphase.com/products/komodo-canduo/
https://www.totalphase.com/products/komodo-canduo/
https://www.ni.com/en-us/shop/labview.html
https://www.ni.com/en-us/shop/labview.html
https://en.wikipedia.org/wiki/System_on_module
https://en.wikipedia.org/wiki/System_on_module

	. Introduction
	. Background
	. Simulating a Multi-Function Display
	. Testing control of a speaker
	. Testing reading of a thermocouple
	. Combined system
	. Existing solutions

	. Methods
	. Hardware
	. FPGA
	. RTOS
	. Host PC
	. Host PC Hardware interface
	. Host PC Simulation interface
	. Test example

	. Results
	. Conclusion
	References

